

## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (Autonomous) Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with code: Thermodynamics (23ME0303) Branch: ME

Year & Sem: II B.Tech & I Regulation: R23

| 1.  | (a) | What is a System in thermodynamics?                                          | [L1][CO1]     | [2M]    |
|-----|-----|------------------------------------------------------------------------------|---------------|---------|
|     | (b) | What do you mean by Boundary?                                                | [L1][CO1]     | [2M]    |
|     | (c) | Define the term Surroundings.                                                | [L1][CO1]     | [2M]    |
|     | (d) | Define Universe.                                                             | [L1][CO1]     | [2M]    |
|     | (e) | What do you mean by control volume?                                          | [L1][CO1]     | [2M]    |
| 2.  | (a) | What is meant by thermodynamic equilibrium? Explain in brief.                | [L1][CO1]     | [5M]    |
|     | (b) | Differentiate between Macroscopic and Microscopic view points.               | [L2][CO1]     | [5M]    |
| 3.  | (a) | Explain the concept of continuum in brief.                                   | [L2][CO1]     | [5M]    |
|     | (b) | Compare closed system with an open system.                                   | [L2][CO1]     | [5M]    |
| 4.  | (a) | Distinguish between intensive and extensive property.                        | [L2][CO1]     | [5M]    |
|     | (b) | Determine the work done by the air which enters into an evacuated vessel     | [L3][CO1]     | [5M]    |
|     |     | from atmosphere when the valve is opened. The atmospheric pressure is        |               |         |
|     |     | 1.013 bar and 1.5 m3 of air at atmospheric condition enters into the vessel. |               |         |
| 5.  |     | Explain the types of system with neat sketches.                              | [L2][CO1]     | [10M]   |
| 6   | (a) | Convert the following readings of pressure to kPa assuming that barometer    | [L2][CO1]     | [5M]    |
| 0.  |     | reads 760 mm of Hg.                                                          |               |         |
|     |     | (i) 80 cm of Hg (ii) 30 cm Hg vacuum(iii) 1.35 m $H_2O$ gauge(iv) 4.2 bar.   |               |         |
|     | (b) | On a piston of 10 cm diameter a force of 1000 N is uniformly applied. Find   | [L3][CO1]     | [5M]    |
|     |     | the pressure on the piston.                                                  |               |         |
| 7.  | (a) | Write short notes on following terms in detail:                              | [L1][CO1]     | [10M]   |
|     |     | a)State b) Process c) Property d) Cycle                                      |               |         |
| 8.  | (b) | Comment whether the following quantities can be called as properties or not  | [L4][CO1]     | [5M]    |
|     |     | (i) $pdV$ , (ii) $Vdp$ , and (iii) $pdV + Vdp$                               |               |         |
|     | (a) | A vacuum recorded in the condenser of a steam power plant is 740 mm of       | [L2][CO1]     | [5M]    |
|     |     | Hg. Find the absolute pressure in the condenser in Pa. The barometric        |               |         |
| 0   |     | reading is 760 mm of Hg.                                                     | FL 411 (2011) | [10] [] |
| 9.  |     | What is quasi static process? Explain in detail?                             |               | [10M]   |
| 10  | (a) | Explain reversible process with an example.                                  | [L2][CO1]     | [5M]    |
| 10. | (b) | With an example explain irreversible process.                                | [L2][C01]     | [5M]    |
| 11. | (a) | Differentiate between reversible and irreversible process with examples.     | [L2][CO1]     | [5M]    |
|     | (b) | What are the causes for irreversibility?                                     | [L1][CO1]     | [5M]    |

## <u>UNIT-I</u>

## UNIT-II

| 1. | a) Define the term work.                                                                                                                                  |              |                         |                                    | [L1][CO2]                    | [2M]                |                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|------------------------------------|------------------------------|---------------------|-----------------|
|    | b) Enumerate the term heat.                                                                                                                               |              |                         |                                    | [L1][CO2]                    | [2M]                |                 |
|    | c) What do                                                                                                                                                | you mean l   | by Thermal reservoir    | ?                                  |                              | [L1][CO2]           | [2M]            |
|    | d) Define Er                                                                                                                                              | thalpy.      |                         |                                    |                              | [L1][CO2]           | [2M]            |
|    | e) State PM                                                                                                                                               | M-1.         |                         |                                    |                              | [L1][CO2]           | [2M]            |
| 2. | Explain a                                                                                                                                                 | bout Work    | and Heat transfer.      | And classify the wor               | rk transfers.                | [L2][CO2]           | [10M]           |
| 3. | (a) Compare                                                                                                                                               | work trans   | fer and heat transfer   | with neat sketches                 |                              | [L2][CO2]           | [5M]            |
|    | (b) Show that                                                                                                                                             | work is a    | path function and no    | ot a property.                     |                              | [L1][CO2]           | [5M]            |
| 4. | (a) What do                                                                                                                                               | you unders   | tand by path function   | n and point function               | ?                            | [L1][CO2]           | [5M]            |
|    | (b)Explain z                                                                                                                                              | eroth law o  | of thermodynamics w     | vith neat sketch                   |                              | [L2][CO2]           | [5M]            |
| 5  | Explain L                                                                                                                                                 |              | ariment with post sla   | atah                               |                              |                     |                 |
| 5. | Explain J                                                                                                                                                 | Sule s'exp   | eriment with neat ski   |                                    |                              |                     |                 |
| 0. | (a) Different                                                                                                                                             | late betwe   | en neat engine and n    | leat pump.                         |                              | [L2][CO2]           |                 |
|    | (b) What are                                                                                                                                              | the limita   | tions of the First law  | of Thermodynamic                   | s?                           | [L1][CO2]           | [5M]            |
| 7. | A piston                                                                                                                                                  | and cylind   | ler machine contain     | a fluid system whi                 | ch passes through a          | [L3][CO2]           | [10M]           |
|    | complete                                                                                                                                                  | cycle of fo  | our processes. During   | g a cycle the sum of               | all heat transfer is -       |                     |                 |
|    | 170 KJ. C                                                                                                                                                 | Complete t   | the following table s   | showing the method                 | for each item, and           |                     |                 |
|    | computes                                                                                                                                                  | the net rat  | e of work output in l   | κW.                                |                              |                     |                 |
|    |                                                                                                                                                           |              |                         |                                    |                              |                     |                 |
|    |                                                                                                                                                           |              |                         |                                    | Change in                    |                     |                 |
|    | Pro                                                                                                                                                       | cess         | Heat transfer in        | Work done in                       | internal                     |                     |                 |
|    | 110                                                                                                                                                       |              | KJ/min                  | KJ/min                             | energy                       |                     |                 |
|    |                                                                                                                                                           |              |                         |                                    | KJ/min                       |                     |                 |
|    | a                                                                                                                                                         | -b           | 0                       | 2170                               | -                            |                     |                 |
|    | t                                                                                                                                                         | <u></u>      | 21,000                  | 0                                  | -                            |                     |                 |
|    | C                                                                                                                                                         | -d           | -2,100                  | -                                  | -36,600                      |                     |                 |
|    | C                                                                                                                                                         | -a           | -                       | -                                  | -                            |                     |                 |
|    |                                                                                                                                                           |              |                         |                                    |                              |                     |                 |
|    | An Iron of                                                                                                                                                | osting of m  | ass 10Ka has an origi   | nol tomporature of 20              | $00^{0}$ C. It is applied to |                     |                 |
| 0  | a) $50^{\circ}$ C Fin                                                                                                                                     | d the direct | tion and magnitude of   | f hast transfor. A ssur            | DO C. It is cooled to        | [L3][CO2]           | [5M]            |
| 8. | 100  C. Plin                                                                                                                                              | 77KI/KoI     | Ton and magnitude of    | liteat transfer. Assuir            | le specific fleat of         |                     |                 |
|    | b) In an air i                                                                                                                                            | notor cyli   | nder the compressed     | l air has an internal              | energy of 450 kI/kg          |                     | [ <b>5</b> ]/[] |
|    | at the be                                                                                                                                                 | ginning of   | the expansion and       | an internal energy                 | of 220 kI/kg after           |                     |                 |
|    | expansion                                                                                                                                                 | If the x     | vork done by the a      | ir during the expa                 | nsion is $120 \text{ kJ/kg}$ |                     |                 |
|    | calculate                                                                                                                                                 | the heat flo | ow to and from the c    | vlinder.                           | 151011 15 120 KJ/KG,         |                     |                 |
|    |                                                                                                                                                           |              |                         | J                                  |                              | [L1][CO2]           | [10M]           |
| 9  | State Firs                                                                                                                                                | t law of the | ermodynamics and it     | ts applications in bri             | ef.                          |                     | []              |
| 10 | a) One kg of Air is heated from $20^{\circ}$ C to $105^{\circ}$ C. Find the change of internal energy                                                     |              |                         |                                    | of internal energy           | [L3][CO2]           | [5M]            |
| 10 | and change of enthalpy Assume $C_{p-1}$ 01 KI/KgK and $C_{p-0}$ 72 KI/KgK                                                                                 |              |                         |                                    |                              |                     |                 |
|    | b) In an int                                                                                                                                              | ernal con    | pustion engine du       | ring the compress                  | ion stroke the heat          | [ <b>I</b> _4][CO2] | [5M]            |
|    | $v_{\mu}$ in internal combustion engine, during the compression stroke the heat rejected to the cooling water is 50 kJ/kg and the work input is 100 kJ/kg |              |                         |                                    |                              |                     |                 |
|    | Calculate the change in internal energy of the working fluid stating whether it is                                                                        |              |                         |                                    |                              |                     |                 |
|    | a gain or loss                                                                                                                                            |              |                         |                                    |                              |                     |                 |
| 11 | a) The properties of a closed system change following the relation between                                                                                |              |                         |                                    | ion between                  | [L4][CO2]           | [5M]            |
|    | pressure o                                                                                                                                                | nd volume    | p as nV - 3.0 where $r$ | n is in har V is in m <sup>3</sup> | Calculate the                |                     | [****]          |
|    | pressure and volume as $pv = 3.0$ where p is in bar v is in m <sup>2</sup> . Calculate the work done when the pressure increases from 1.5 her to 7.5 her  |              |                         |                                    |                              |                     |                 |
|    | b) To a closed system 150 kL of work is symplical. If the initial volume is                                                                               |              |                         |                                    |                              | [5]/[]              |                 |
|    | $0.6 \text{ m}^3$ and pressure of the system changes as $n = 8$ . AV where n is in her and                                                                |              |                         |                                    |                              |                     |                 |
|    | 0.6 m <sup>-</sup> and pressure of the system changes as $p = 8 - 4V$ , where p is in bar and                                                             |              |                         |                                    |                              |                     |                 |
|    | V is in m <sup>°</sup> , determine the final volume and pressure of the system.                                                                           |              |                         |                                    |                              |                     |                 |

| 1.  | a) State second law of thermodynamics.                                                                                                                                             | [L1][CO3]         | [2M]            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
|     | b) State third law of thermodynamics.                                                                                                                                              | [L1][CO3]         | [2M]            |
|     | c) Define the term Entropy.                                                                                                                                                        | [L1][CO3]         | [2M]            |
|     | d) What is PMM-II?                                                                                                                                                                 | [L1][CO3]         | [2M]            |
|     | e) What do you mean by availability?                                                                                                                                               | [L1][CO3]         | [2M]            |
| 2.  | Explain Clausius inequality in detail.                                                                                                                                             | [L2][CO3]         | [10M]           |
| 3.  | An iron cube at a temperature of 400°c is dropped into an insulated bath                                                                                                           | [L3][CO3]         | [10M]           |
|     | containing 10 kg water at 25°c. The water finally reaches a temperature of                                                                                                         |                   |                 |
|     | $50^{\circ}$ c at steadystate. Given that the specific heat of water is equal to 4186 J/kgK.                                                                                       |                   |                 |
| 1   | Find the entropy changes for the fron cube and water.                                                                                                                              | <b>II 11/CO31</b> | [ <b>5</b> ]/[] |
| 4.  | i) Clausius statement ii) Kelvin-plank statement                                                                                                                                   |                   |                 |
|     | b) Explain the principle of entropy in brief                                                                                                                                       | [L2][CO3]         | [5M]            |
| 5   | Develop an expression for Carnot Cycle and efficiency of cycle                                                                                                                     |                   | [10M]           |
| 6   | a) Describe availability and unavailability                                                                                                                                        | [L3][CO3]         | [10]01]         |
| υ.  | a) Describe availability and unavailability.                                                                                                                                       |                   |                 |
|     | b) I wo Carnot engines work in series between the source and sink temperatures                                                                                                     |                   |                 |
|     | intermediate temperature                                                                                                                                                           |                   |                 |
| 7.  | A carnot engine working between $400^{\circ}$ C and $40^{\circ}$ C produce 130 KJ of work. Determine                                                                               | [L3][CO4]         | [10M]           |
|     | i) The thermal efficiency. ii) the heat added iii) The entropy changes during the heat                                                                                             | [][               | [=•==]          |
| 0   | rejection process.                                                                                                                                                                 |                   | [10]            |
| 8.  | An ice plant working on a reversed Carnot cycle heat pump produces 15 tonnes                                                                                                       | [L3][CO4]         |                 |
|     | of ice per day. The ice is formed from water at $0^{\circ}$ C and the formed ice is                                                                                                |                   |                 |
|     | maintained ato C. The heat is rejected to the atmosphere at 25 C. The heat pump                                                                                                    |                   |                 |
|     | used to full the ree plant is coupled to a Californeighte which absorbs heat from a source, which is maintained at $220^{\circ}$ C by burning liquid fuel of $44500 \text{ kJ/kg}$ |                   |                 |
|     | calorific value and rejects the heat to the atmosphere Determine .                                                                                                                 |                   |                 |
|     | (i) Power developed by the engine.                                                                                                                                                 |                   |                 |
|     | (ii) Fuel consumed per hour.                                                                                                                                                       |                   |                 |
|     | Take enthalpy of fusion of ice = $334.5 \text{ kJ/kg}$ .                                                                                                                           |                   |                 |
| 9.  | a) Derive an equation for Gibbs and Helmholtz functions.                                                                                                                           | [L3][CO4]         | [5M]            |
|     | b) Derive the Maxwell relations.                                                                                                                                                   | [L3][CO4]         | [5M]            |
| 10  | 5 kg of air at 550 K and 4 har is analoged in a closed system                                                                                                                      |                   | [10M]           |
| 10. | (i) Determine the availability of the system if the surrounding pressure                                                                                                           |                   | [TOTAT]         |
|     | and temperature are 1 bar and 290 K respectively                                                                                                                                   |                   |                 |
|     | (ii) If the air is cooled at constant pressure to the atmospheric                                                                                                                  |                   |                 |
|     | temperature determine the availability.                                                                                                                                            |                   |                 |
| 11. | $0.04 \text{ m}^3$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar                                                                                    | [L3][CO4]         | [10M]           |
| -   | and 15°C. The gas is compressed isotherm ally and reversibly until the pressure                                                                                                    | 4                 |                 |
|     | is 4.8 bar. Calculate :                                                                                                                                                            |                   |                 |
|     | (i) The change of entropy,                                                                                                                                                         |                   |                 |
|     | (ii) The heat flow, and                                                                                                                                                            |                   |                 |
|     | (iii) The work done.                                                                                                                                                               |                   |                 |
|     | Sketch the process on a p-v and T-s diagram.                                                                                                                                       |                   |                 |
|     | Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen = 28.                                                                                                        |                   |                 |

| 1.  | a) Define the term pure substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [L1][CO4] | [2M]            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|
|     | b) What do you mean by triple point?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [L1][CO4] | [2M]            |
|     | c) Define dryness fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [L1][CO4] | [2M]            |
|     | d) Explain about steam Calorimeter in brief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [L2][CO4] | [2M]            |
|     | e) What is a Mollier chart?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [L1][CO4] | [2M]            |
| 2.  | Build the phase equilibrium diagram for a pure substance P-V, P-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [L3][CO4] | [10M]           |
|     | T-S plot with relevant constant property line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |
| 3.  | A certain gas has $c_p = 1.968$ kJ/kg K, and $c_v = 1.507$ kJ/kg K. Find its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [L3][CO4] | [10M]           |
|     | molecular weight and gas constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                 |
|     | A constant volume chamber of $0.3\text{m}^3$ capacity contains 2kg of this gas at 5°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                 |
|     | Heat is transferred to the gas until the temperature is 100°C. Find the work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                 |
|     | done, heat transferred and the changes in internal energy, enthalpy and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                 |
| 4   | entropy. $(A + A + A) = (A + A) = ($ |           | [10] <b>[</b> 1 |
| 4.  | An insulated cylinder of volume capacity 4 m <sup><math>\circ</math></sup> contains 20 kg of nitrogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                 |
|     | increased from 4 hor to 8 hor. Determine :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |
|     | (i) Change in internal energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |
|     | (i) Work done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |
|     | (iii) Heat transferred, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                 |
|     | (iv) Change in entropy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                 |
|     | Take for nitrogen : $C_p = 1.04 \text{ kJ/kg K}$ , and $C_v = 0.7432 \text{ kJ/kg K}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                 |
| 5.  | Derive the Clausius-Clapeyron equation with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [L3][CO4] | [10M]           |
| 6.  | a) Calculate the dryness fraction (quality) of steam which has 1.5 kg of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [L3][CO4] | [5M]            |
|     | water in suspension with 50 kg of steam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                 |
|     | b) Find the specific volume, enthalpy and internal energy of wet steam at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [L3][CO4] | [5M]            |
|     | 18 bar, dryness fraction 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |
| 7.  | A vessel having a volume of 0.6 m <sup>3</sup> contains 3.0 kg of liquid water and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [L3][CO5] | [10M]           |
|     | vapour mixture in equilibrium at a pressure of 0.5 M Pa. Calculate :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                 |
|     | (i) Mass and volume of liquid ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |
|     | (ii) Mass and volume of vapour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | F4 03 63        |
| 8.  | A vessel having a capacity of 0.05 m <sup>3</sup> contains a mixture of saturated water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [L3][CO5] | [10M]           |
|     | and saturated steam at a temperature of 245°C. The mass of the liquid present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |
|     | is 10 kg. Find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                 |
|     | Iollowing :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                 |
|     | (i) The pressure, (ii) The mass,<br>(iii) The specific volume. (iv) The specific onthelpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                 |
|     | (iii) The specific entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |
| 9.  | Determine the amount of heat, which should be supplied to 2 kg of water at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [L3][C05] | [10M]           |
|     | 25°C to convert it into steam at 5 bar and 0.9 dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | [=010=]         |
| 10. | Steam enters an engine at a pressure 10 bar absolute and 400°C. It is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [L3][CO5] | [10M]           |
|     | exhausted at 0.2 bar. The steam at exhaust is 0.9 dry. Find :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | -               |
|     | (i) Drop in enthalpy ;(ii) Change in entropy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |
| 11. | A piston-cylinder contains 3 kg of wet steam at 1.4 bar. The initial volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [L3][CO5] | [10M]           |
|     | is 2.25 m3. The steam is heated until its temperature reaches 400°C. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                 |
|     | piston is free to move up or down unless it reaches the stops at the top. When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |
|     | the piston is up against the stops the cylinder volume is 4.65 m <sup>3</sup> . Determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                 |
|     | the amount of work and heat transfer to or from steam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                 |

| <b>UNIT-V</b> |
|---------------|
|               |

| 1.  | a) What is meant by refrigeration?                                                                         | [L1][CO5] | [2M]    |
|-----|------------------------------------------------------------------------------------------------------------|-----------|---------|
|     | b) What do you mean by air conditioning?                                                                   | [L1][CO5] | [2M]    |
|     | c) Define COP.                                                                                             | [L1][CO5] | [2M]    |
|     | d) Define the term refrigerant.                                                                            | [L1][CO5] | [2M]    |
|     | e) Explain the term psychometry in brief.                                                                  | [L2][CO5] | [2M]    |
| 2.  | Derive an expression for C.O.P. for an air refrigeration system working                                    | [L3][CO5] | [10M]   |
|     | on reversed Brayton cycle.                                                                                 |           |         |
| 3.  | Describe a simple vapour compression cycle with the help of p-h and t-s                                    | [L2][CO5] | [10M]   |
|     | diagram.                                                                                                   |           |         |
| 4.  | State the functions of the following parts of a simple vapour                                              | [L1][CO5] | [10M]   |
|     | compression system :                                                                                       |           |         |
|     | ( <i>i</i> ) Compressor( <i>ii</i> ) Condenser( <i>iii</i> ) Expansion valve and ( <i>iv</i> ) Evaporator. |           |         |
| 5.  | A refrigerating system operates on the reversed Carnot cycle. The                                          | [L3][CO5] | [10M]   |
|     | higher temperature of the refrigerant in the system is 35°C and the lower                                  |           |         |
|     | temperature is $-15^{\circ}$ C. The capacity is to be 12 tonnes. Neglect all                               |           |         |
|     | losses. Determine :                                                                                        |           |         |
|     | (i) Co-efficient of performance.                                                                           |           |         |
|     | (ii) Heat rejected from the system per hour.(iii) Power required                                           |           |         |
| 6.  | Explain the psychometric properties in brief.                                                              | [L2][CO5] | [10M]   |
| 7.  | Describe any five psychometric processes with neat sketches.                                               | [L2][CO6] | [10M]   |
| 8.  | a) State the requirements of human comfort in brief.                                                       | [L1][CO6] | [5M]    |
|     | b) Define the following terms:                                                                             | [L1][CO6] | [5M]    |
|     | a)sensible heat load b) latent heat load                                                                   |           |         |
| 9.  | 200 m <sup>3</sup> of air per minute at 15°C DBT and 75% R.H. is heated until its                          | [L3][CO6] | [10M]   |
|     | temperature is 25°C.                                                                                       |           |         |
|     | Find :                                                                                                     |           |         |
|     | (i) R.H. of heated air.                                                                                    |           |         |
|     | (ii) Wet bulb temperature of heated air.                                                                   |           |         |
| 4.0 | (iii) Heat added to air per minute.                                                                        |           | F107 77 |
| 10. | Explain the desirable properties of refrigerant in detail.                                                 | [L2][CO5] | [10M]   |
| 11. | a) Explain the types of refrigerant in brief with examples.                                                | [L2][CO5] | [5M]    |
|     | b) What are the factors that effect human comfort?                                                         | [L1][CO6] | [5M]    |